

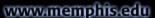
Volume Studies

CIVL 4162/6162

www.memphis.edu

Lesson Objectives

- Define critical parameters of interest in traffic volume studies
- Compute and interpret hourly, daily, weekly, and monthly adjustment factors
- Collect intersection traffic volume counts
- Describe origin-destination traffic volume studies



THE UNIVERSITY OF **MEMPHIS**

Why are Volume Studies Needed?

- Transportation planning/forecasts
- Assessing operations
- Impact analysis
- Determining need for traffic control, etc.

Traffic counts provide the primary measure of demand.

THE UNIVERSITY OF

Parameters of Interest (1)

- Volume
- Rate of flow
- Demand
- Capacity

THE UNIVERSITY OF **MEMPHIS**.

Parameters of Interest (2)

Volume

- The number of vehicles (or persons) passing a point during a specified time period which is usually one hour but need not be.

• Rate of Flow

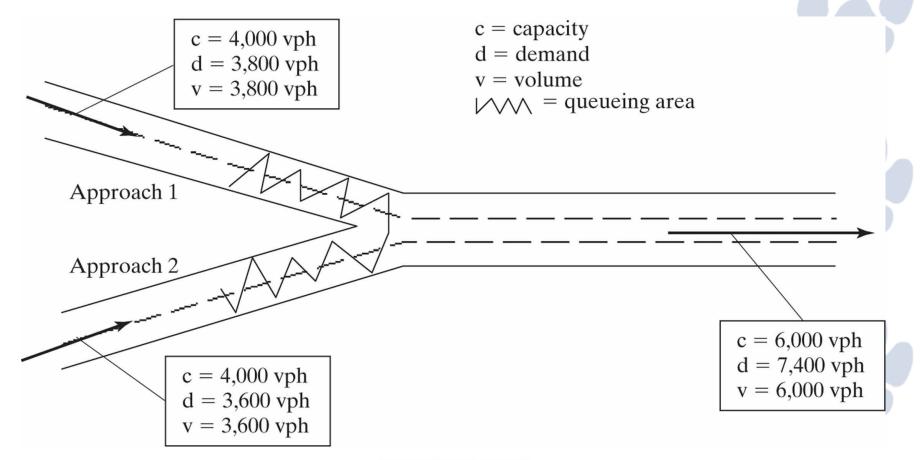
 The rate at which vehicles (or persons) pass a point during a specified time period less than an hour, expressed as an equivalent hourly rate.

THE UNIVERSITY OF **MEMPHIS**

Parameters of Interest (3)

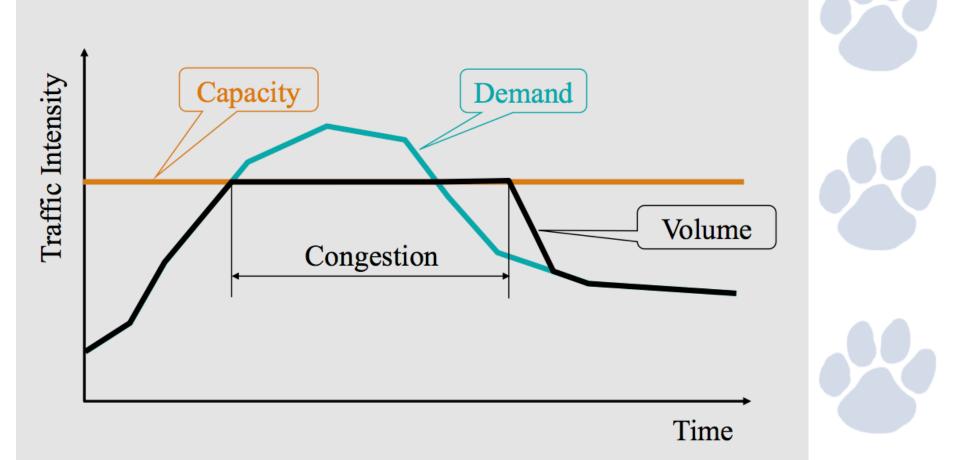
Demand

- The number of vehicles (or persons) that desire to travel past a point during a specified time period (usually one hour).


Capacity

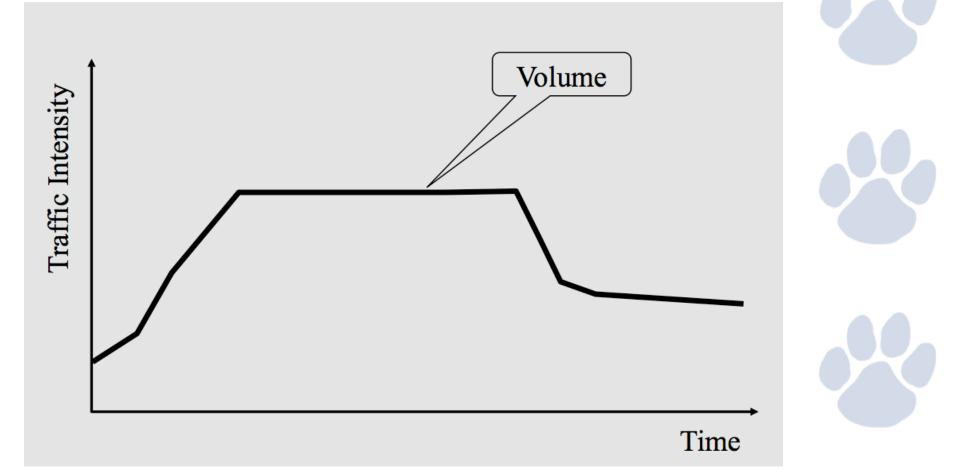
 The maximum rate at which vehicles can traverse a point or short segment during a specified time period.

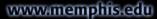
Volume, Demand and Capacity Illustration


THE UNIVERSITY OF **MEMPHIS**.

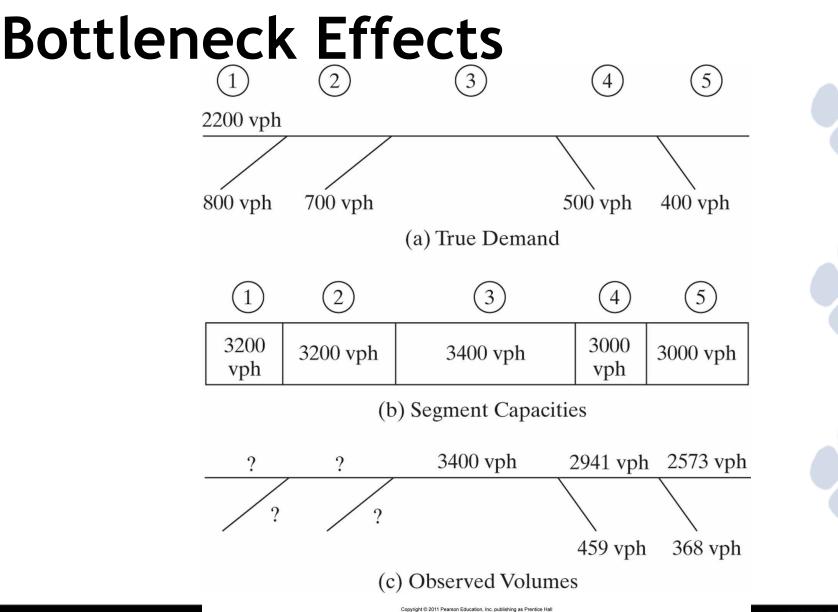
Demand Exceeding Capacity

THE UNIVERSITY OF MEMPHIS.





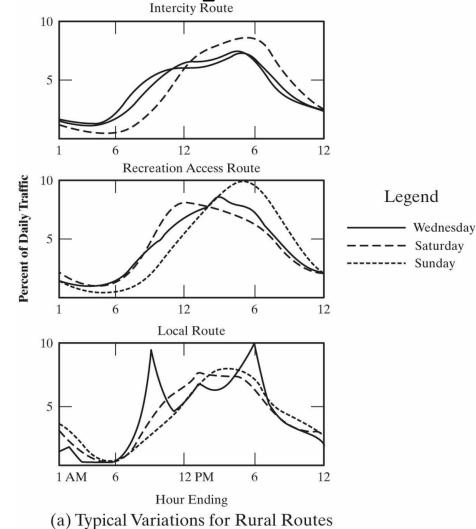
Volume Pattern


THE UNIVERSITY OF **MEMPHIS**

Volume Patterns and Characteristics

- Traffic demand varies!
- Choosing design hour may be complex
- Very important to understand volume variation patterns

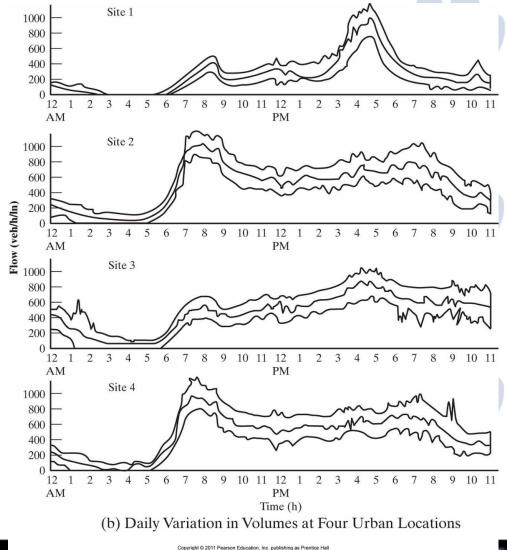
THE UNIVERSITY OF


Dreamers. Thinkers. Doers.

www.memphis.edu

Observed Hourly Traffic Patterns

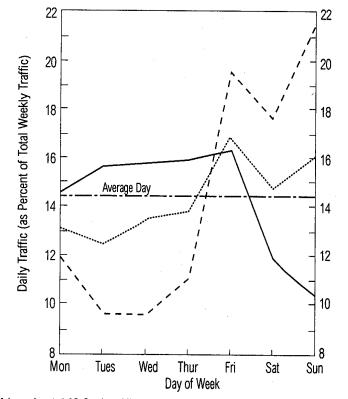
THE UNIVERSITY OF



www.memphis.edu

Observed Daily Variations

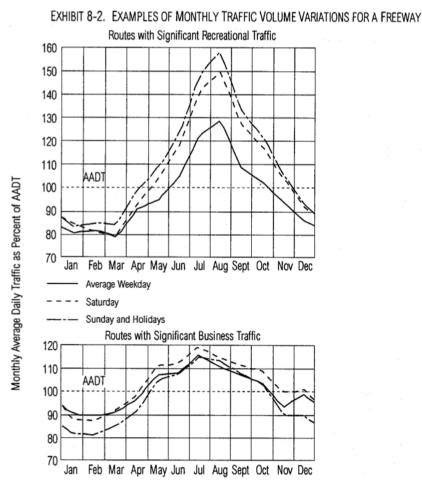
THE UNIVERSITY OF



THE UNIVERSITY OF **MEMPHIS**.

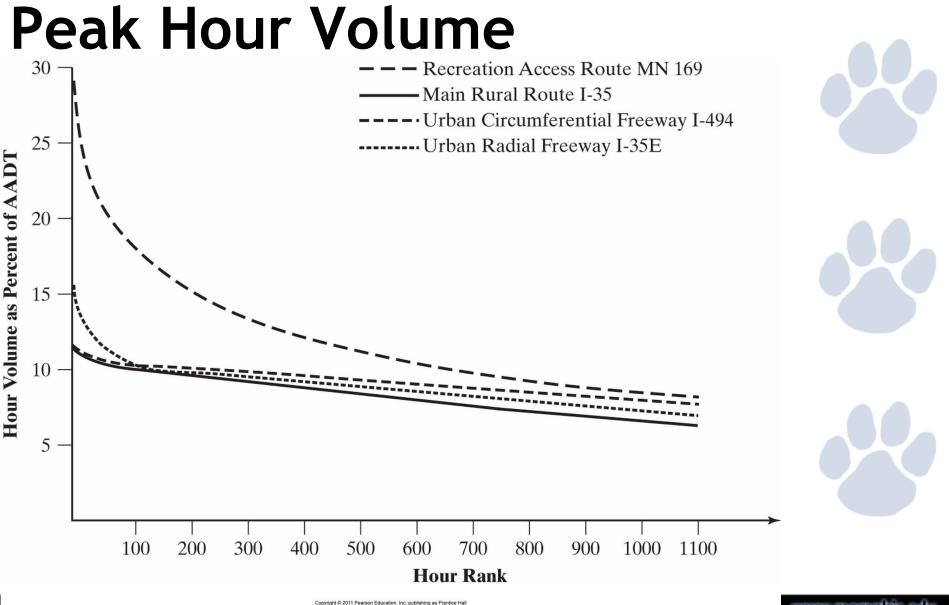
Volume Patterns and Characteristics

EXHIBIT 8-4. EXAMPLES OF DAILY TRAFFIC VARIATION BY TYPE OF ROUTE



- ------ Main rural route I-35, Southern Minnesota, AADT 10,823, 4 lanes, 1980.
- - - Recreational access route MN 169, North-Central Lake Region, AADT 3,863, 2 lanes, 1981.
- ----------- Suburban freeway, four freeways in Minneapolis-St. Paul, AADTs 75,000-130,000, 6-8 lanes, 1982.
- ----- Average day.
 - Source: Minnesota Department of Transportation.

THE UNIVERSITY OF **MEMPHIS**


Monthly VariationS

www.memphis.edu

THE UNIVERSITY OF **MEMPHIS**.

www.memphis.edu

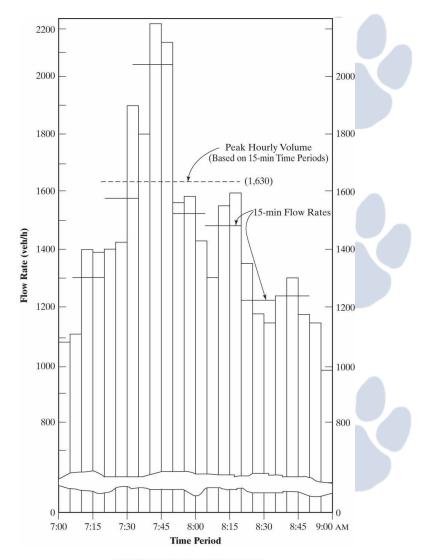

Peak Hour Volume

 Table 9.1: Key Values from Figure 9.5

	Percent of AADT Occurring in the Peak Hou										
Type of Facility	1st	30th	100th	200th 15.0%							
Recreational Access	30.0%	22.0%	18.0%								
Main Rural	15.0%	13.0%	10.0%	9.0%							
Urban Circumferential Freeway	11.5%	10.5%	10.0%	9.5%							
Urban Radial Freeway	11.5%	10.5%	10.0%	9.5%							

Within Peak Hour

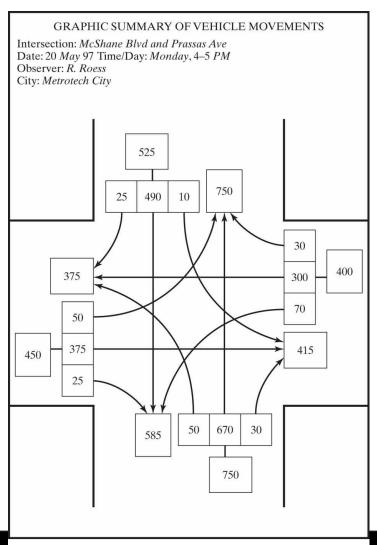
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

www.memphis.edu

THE UNIVERSITY OF

Volume Studies

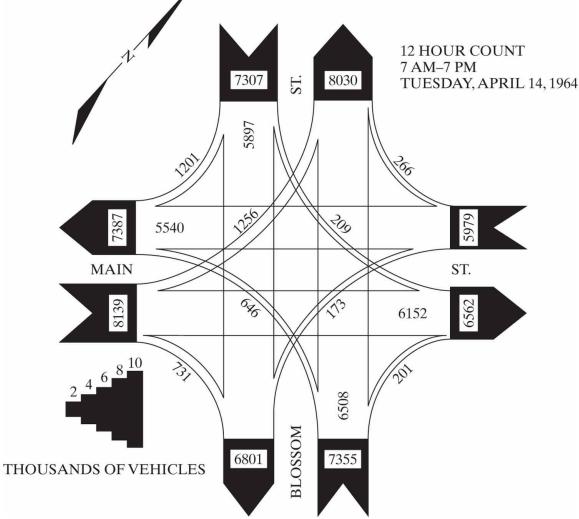
Manual counts


- Useful when data is needed quickly, duration of study is short, or scope is limited
- Useful when more detail is needed such as:
 - Vehicle occupancy
 - Pedestrians
 - Turning movements
 - Vehicle classifications

Automatic counts

- Useful when complex classifications not necessary*
- Useful when data is needed over an extended period of time

Intersection Traffic Volume Count



THE UNIVERSITY OF

www.memphis.edu

Intersection Traffic Volume Count

THE UNIVERSITY OF

www.memphis.edu

THE UNIVERSITY OF **MEMPHIS**.

Limited Network Volume Studies

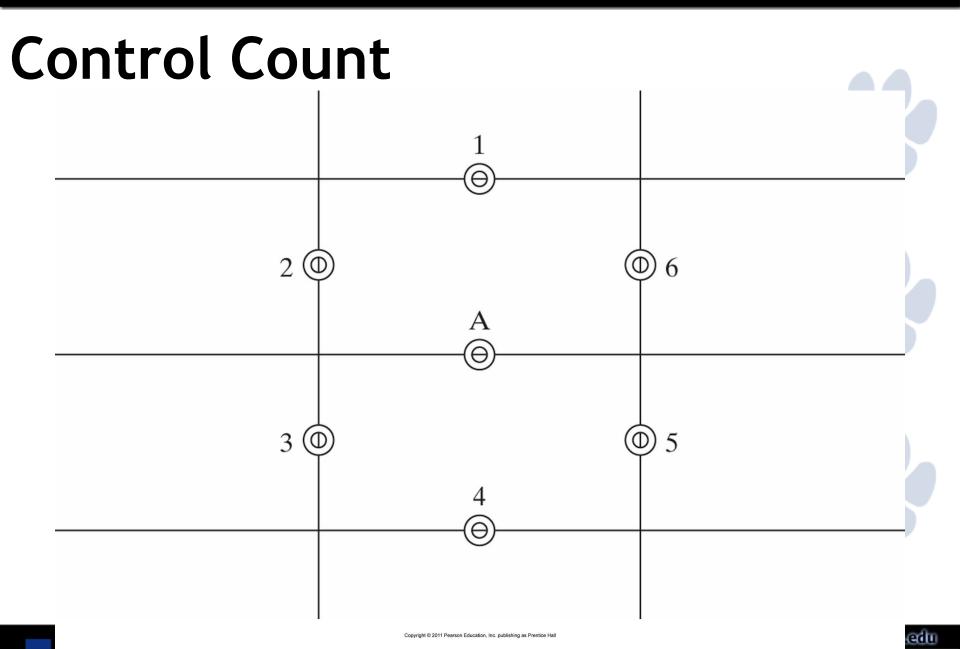
- Sampling techniques are used along with statistical manipulation to develop an hourly volume map for the network
- Requires identification of locations with similar demand patterns over time
- Uses control and coverage counts

Limited Network Volume Studies

- Control count maintained throughout study period; selected locations are measured to identify demand variation patterns
- Coverage count taken at all locations in study area for a portion of study period (samples)
- Midblock counts

THE UNIVERSITY OF

Limited Network Volume Studies


Control Count

- One control for every 10-20 coverage locations
- Different control for each class of facility
- Different control for significantly different land-use type
- Used to establish volume patterns

Coverage Count

- These are sample locations which will be expanded with control information
- All network links should be counted at least once during study period

THE UNIVERSITY OF **MEMPHIS**.

Dreamers. Thinkers. Doers.

Networkwide Studies

Table 9.3: Data and Computations for a One-Day Network Volume Study

Control-Cou	int Data Location A	Coverage-Count Data									
Time (PM)	Count (vehs)	Location	Time (PM)	Count (vehs)							
12-1	825	1	12-1	840							
1–2	811	2	1–2	625							
2-3	912	3	2-3	600							
3-4	975	4	4–5	390							
4-5	1,056	5	5-6	1,215							
5-6	1,153	6	6–7	1,440							
6–7	938										
7-8	397										

(a) Data from a One-Day Study

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

	Time (PM)	Count (vehs)	Proportion of 8-Hour Total
12	12-1	825	825/7,067 = 0.117
	1-2	811	811/7,067 = 0.115
	2-3	912	912/7,067 = 0.129
	3-4	975	975/7,067 = 0.138
	4–5	1,056	1,056/7,067 = 0.149
	5-6	1,153	1,153/7,067 = 0.163
	6–7	938	938/7,067 = 0.133
	7–8	397	397/7,067 = 0.056
12	Total	7,067	1.000

(b) Computation of Hourly Volume Proportions From Control-Count Data

Location	Time (PM)	Count (vehs)	Estimated 8-Hr Volume (vehs)	Estimated Peak Hour Volume (vehs)		
1	12-1	840	840/0.117 = 7,179	$\times 0.163 = 1,170$		
2	1-2	625	625/0.115 = 5,435	$\times 0.163 = 886$		
3	2-3	600	600/0.129 = 4,651	$\times 0.163 = 758$		
4	4–5	390	390/0.149 = 2,617	$\times 0.163 = 427$		
5	5-6	1,215	1,215/0.163 = 7,454	$\times 0.163 = 1,215$		
6	6–7	1,440	1,440/0.133 = 10,827	$\times 0.163 = 1,765$		

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

(c) Expansion of Hourly Counts

THE UNIVERSITY OF **MEMPHIS**.

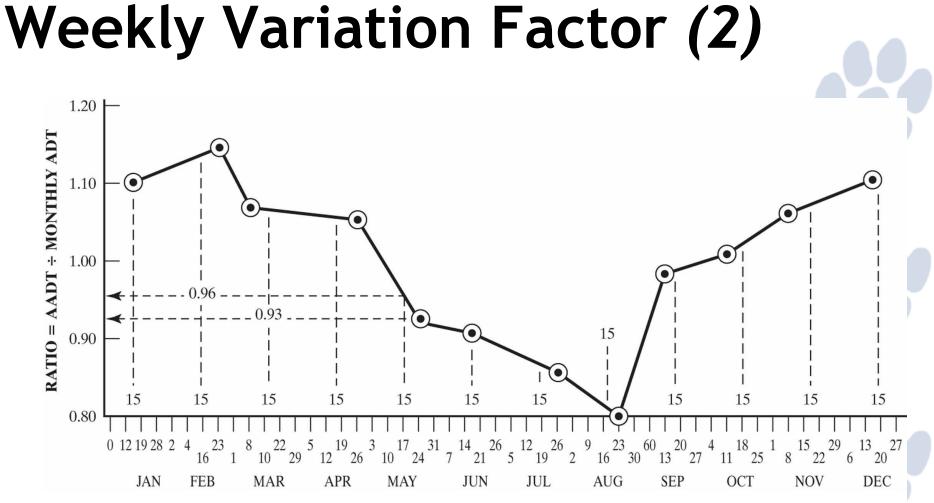

Daily Variation Factor

 Table 9.7: Calibration of Daily Variation Factors

Day	Yearly Average Volume for Day (vehs/day)	Daily Adjustment Factor (DF)
Monday	1820	1430/1820 = 0.79
Tuesday	1588	1430/1588 = 0.90
Wednesday	1406	1430/1406 = 1.02
Thursday	1300	1430/1300 = 1.10
Friday	1289	1430/1289 = 1.11
Saturday	1275	1430/1275 = 1.12
Sunday	1332	1430/1332 = 1.07
Total	10,010	
Estimated AADT	1,430	

THE UNIVERSITY OF

THE UNIVERSITY OF **MEMPHIS**

Daily and Monthly Adjustment Factors

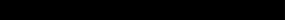

Daily Fact	ors (DF)	Monthly Factors (MF)									
Day	Factor	Month	Factor	Month	Factor						
Monday	1.072	January	1.215	July	0.913						
Tuesday	1.121	February	1.191	August	0.882						
Wednesday	1.108	March	1.100	September	0.884						
Thursday	1.098	April	0.992	October	0.931						
Friday	1.015	May	0.949	November	1.026						
Saturday 0.899		June	0.918	December	1.114						
Sunday	0.789		Constant Constants								

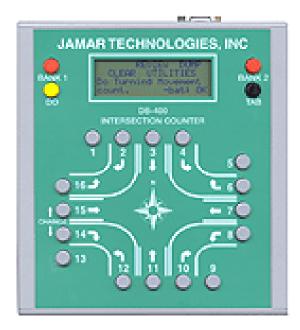
 Table 9.11: Typical Daily and Monthly Variation Factors for a Contiguous Area on a State Highway System

THE UNIVERSITY OF

Network wide AADT

- AADT = $V_{24ij}^*Df_i^*MF_j$
 - AADT: Average annual daily traffic
 - V_{24ij} :24-hour volume for day i, in month j
 - Df_i: Daily adjustment factor for day i
 - MF_j : Monthly adjustment factor for month j

THE UNIVERSITY OF **MEMPHIS**.


Vehicle Miles Travelled

- VMT₃₆₅ = AADT * L *365
 - Annual vehicle miles travelled over the segment
 - AADT for the segment (veh/day)
 - Length of the segment

Manual Counts

http://jamartech.com

www.memphis.edu

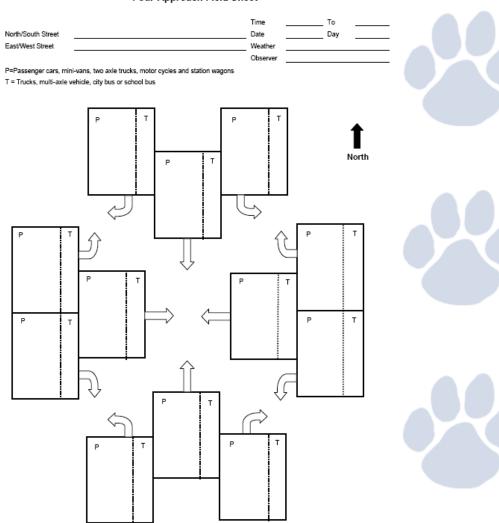
Manual Counts

Figure 1 – Mar	ual Count Checklist
----------------	---------------------

D	
Pro	iant.
1 10	CCL.

Count Location:

Date:


Time of Count:

- 1. Check data collection equipment for proper operation and calibration
- Label the field equipment as needed
- 3. Bring necessary accessory equipment (Batteries, flashlight, etc)
 - 4. Stopwatch
- 5. Bring data collection forms and fill in as much data as possible before leaving the office.
- Extra pens and paper for taking notes
- Clipboard or writing surface
- 8. Business cards of the engineer to contact and be prepared to answer the question "What are you doing here?"
 - 9. A map to the site
- 10. Weather condition equipment (Sunscreen, umbrella, jacket or warm coat)
- 11. Safety equipment (Flags, Signs, safety vests, or other reflective materials)

Manual Counts

Vehicle Turn Movement Count Four-Approach Field Sheet

Manual Counts

						TA	BUL	AR SU	MMARY	OF	VEH	ICL	ECOL	INTS	6					
Observer:						Date:			IMMARY	Day:			c	ity:					ght Turn	
Intersection																		L=Lef	aignt t Turn	
Time Begins			n North				m South		TOTAL North/South			m East				n West		TOTAL East/West	TOTAL ALL	
	R	S	L	TOTAL	R	s		TOTAL		R	s		TOTAL	R	s	L	TOTAL			
																				t
																				t

Field Considerations

- Everyone should be familiar with count procedure/labels/equipment
- Must have enough members in field to adequately record, provide relief, and to address safety concerns
- Be prepared!!!

THE UNIVERSITY OF **MEMPHIS**.

Field Considerations

- Observer locations (manual studies)
- Count location (automatic studies)
- Be sure to secure equipment for automatic counts
- Install equipment during very low volume time periods
- Safety vests!

THE UNIVERSITY OF

Count Periods

- 2 hours, peak period
- 4 hours, am/pm peak period
- 6 hours, am/midday/pm peak periods
- 12 hours daytime (7am-7pm)
- 24 hours, week, month, etc. (automatic)

Count Periods

Table 1 – Typical Peak Flow Traffic Hours

Land Use	Typical Peak Hours
Residential	7:00-9:00 am weekday
	4:00-6:00 pm weekday
	5:00-6:00 pm weekday
Regional Shopping center	2:30-3:30 pm Saturday
	12:30-1:30 pm Saturday
Office	7:00-9:00 am weekday
Once	4:00-6:00 pm weekday
Industrial	Varies
Recreational	Varies
Hospital	Varies based on shift changes
School	Varies based on school release times

Intersection Studies

- Typical 4-leg intersection has 12 separate movements
- Vehicles usually counted as they depart the intersection, but can not do this when D>Q_{cap}
- Must record queue size

$$\begin{split} V_{ai} &= V_{di} + N_{qi} - N_{q_{i-1}} \\ V_{ai} &= arrival \ volume \ in \ period \ i, vehs \\ V_{di} &= departure \ volume \ in \ period \ i, vehs \\ N_{qi} &= number \ of \ queued \ vehs \ at \ end \ of \ period \ i, vehs \\ N_{q_{i-1}} &= number \ of \ queued \ vehs \ at \ end \ of \ period \ i - 1, vehs \end{split}$$

Intersection Studies

Time Period	Total Departure Count (veh)	Queue Length (veh)	Arrival Volume (veh)	
4:00-4:15 pm	50	0	50	
4:15-4:30	55	0	55	
4:30-4:45	62	5	62 + 5 = 67	
4:45-5:00	65	10	65 + 10 - 5 = 70	
5:00-5:15	60	12	60 + 12 - 10 = 62	
5:15-5:30	60	5	60 + 5 - 12 = 53	
5:30-5:45	62	0	62 - 5 = 57	
5:45-6:00	55	0	55	
	Total = 469		Total = 469	

THE UNIVERSITY OF

Statewide Programs

- Involves entire state highway system in continuous study period
- AADT/ADT (<u>http://ww3.tdot.state.tn.us/trafficHistory/</u>)
- Vehicle-miles traveled
- Usually every 2 mile state hwy segment is included in coverage count each year
- Develop AADT estimate for each coverage location annually
- Control locations may be permanent; data collected over entire year

THE UNIVERSITY OF **MEMPHIS**

Specialized Counting Studies

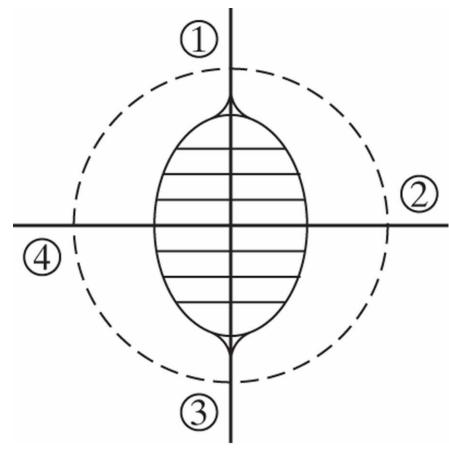
- Origin and destination counts
 - Weaving areas
 - Freeway studies
 - Major activity centers
- Cordon counts
 - Estimate vehicle and person accumulation within the cordon
 - Used to supplement O-D studies or for trend analysis
- Screen-line
 - Record travel from one area to another
 - Used to adjust results of O-D studies

For specialized counts, must have more than just count data.

Types of Volume Studies

- Intersection counts (duration depends on the purpose, 15-minute intervals or shorter, turning volumes)
- Pedestrian counts (duration depends on the purpose, 5-minute intervals or longer)
- Cordon counts (one weekday + travelers' survey)
- Screen line counts (hourly counts for a weekday)
- Area wide counts
 - Control counts (hourly counts with permanent stations)
 - Coverage counts (hourly counts for one or two days)

THE UNIVERSITY OF


Origin-Destination Counts

- License plate studies
 - Recording license plates at entry and exit
- Postcard studies
 - Handing out color coded post cards at entry points and collecting them at exit
- Interview studies
 - Stopping vehicles and interviewing them about trip details

THE UNIVERSITY OF

O-D Counts Example

THE UNIVERSITY OF **MEMPHIS**.

O-D Counts Example (2)

Destination Station	Origin Station						
	1	2	3	4	Tj	Vj	Fj
1	50	8	20	17	95	250	2.63
2	10	65	21	10	106	310	2.92
3	15	12	38	15	80	200	2.50
4	13	14	18	42	87	375	4.31
Ti	88	99	97	84	368		
Vi	210	200	325	400		1135	
Fi	2.39	2.02	3.35	4.76			

 Table 9.12:
 Sample Expansion of Origin and Destination Data

(a) Field Data and Factors for Iteration 0

THE UNIVERSITY OF **MEMPHIS**

O-D Counts Example (3)

$$T_{ijN} = T_{ijN-1} \left(\frac{F_i + F_j}{2} \right)$$

- Fi: Adjustment factor for origin i
- Fj: Adjustment factor for origin j
- T_{ijN} : Number of trips from station i to station j after Nth iteration
- Ti: Sum of matched trips from station i
- Tj: Sum of matched trips from station j
- Vi: Observed total volume at Station i
- Vj: Observed total volume at Station j

O-D Counts Example (4)

Table 0 12: Sample Expansion of Origin and Destination Data

Destination Station	Origin Station						
	1	2	3	4	Tj	Vj	Fj
1	125	19	60	63	267	250	0.94
2	27	161	66	38	292	310	1.06
3	37	27	111	54	229	200	0.87
4	44	44	69	191	347	375	1.08
Ti	232	251	306	346	1135		
Vi	210	200	325	400		1135	
Fi	0.90	0.80	1.06	1.16			

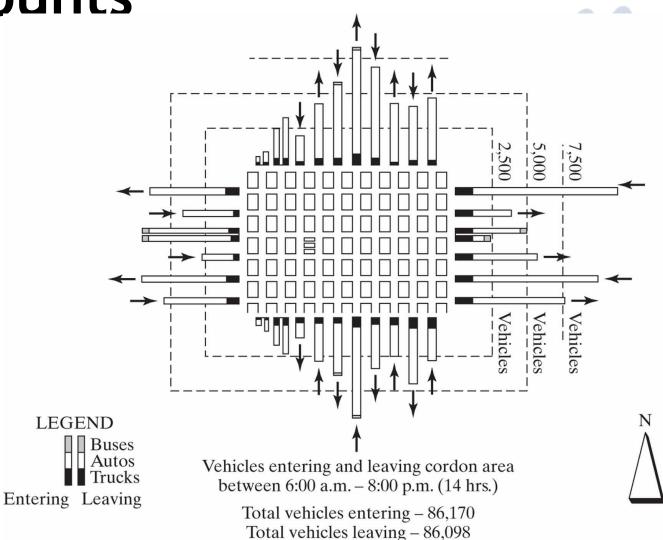
(b) Initial Expansion of O-D Matrix (Iteration 0)

O-D Counts Example (5)

Destination Station	Origin Station						
	1	2	3	4	Tj	Vj	Fj
1	116	16	60	66	257	250	0.97
2	26	150	70	43	288	310	1.08
3	33	23	108	55	218	200	0.92
4	43	42	74	213	372	375	1.01
Ti	217	230	311	376	1135		
Vi	210	200	325	400		1135	
Fi	0.97	0.87	1.04	1.06			

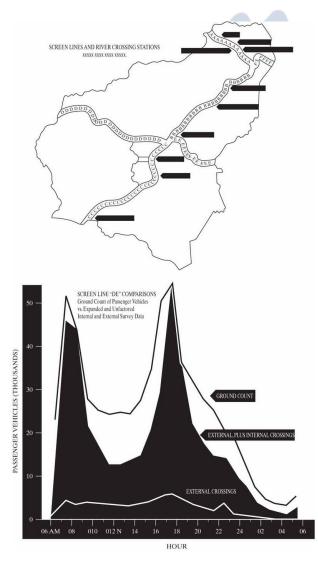
(c) First Iteration of O-D Matrix

O-D Counts Example (6)

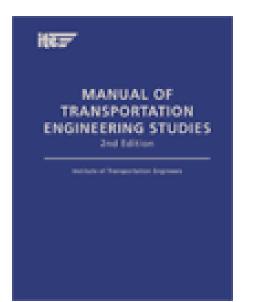

Destination Station	Origin Station						
	1	2	3	4	Tj	Vj	Fj
1	112	15	60	67	254	250	0.98
2	27	145	74	46	292	310	1.06
3	31	20	105	55	211	200	0.95
4	43	39	76	221	378	375	0.99
Ti	212	220	316	388	1135		
Vi	210	200	325	400		1135	
$\mathbf{F_{i}}$	0.99	0.91	1.03	1.03			

(d) Second Iteration of O-D Matrix

THE UNIVERSITY OF MEMPHIS.


Dreamers. Thinkers. Doers.

Cordon Counts


Screen-Line Counts

For more information...

 Chapter 2: Manual of Transportation Engineering Studies, 2nd Edition, ITE 2010.

